حل معادله دیفرانسیل با مشتقات جزیی برگر با استفاده از روش خطی سازی

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل بعضی از معادلات دیفرانسیل با مشتقات جزئی با استفاده از روش زیر معادله دیفرانسیل معمولی

دراین پایان نامه بعضی از معادلات معروف را بااستفاده از روش زیرمعادله دیفرانسیل معمولی برنولی حل کرده ایم.معادلات دیفرانسیل بامشتقات جزئی غیرخطیرا با تغییرمتغیر مناسب به معادلات دیفرانسیل معمولی تبدیل نموده وپس از یکسری اعمال جبری مناسب،جواب های دقیق معادلات رابه طوریکه به جواب معادله برنولی وابسته شود،به دست می آوریم.

15 صفحه اول

روش اجزای محدد برای حل معادله برگر غیر خطی با استفاده از بی اسپلاین ها

در این پایان نامه با بکار گیری روش بی-اسپلاین اجزای محدود، جواب تقریبی معادله را برای اعداد رینولدز بزرگ، بدست آورده ایم. ابتدا با استفاده از تبدیل هاف - کول، معادله غیر خطی برگر را به معادله خطی گرما تبدیل می کنیم و روش اجزای محدود با پایه های بی - اسپلاین مربعی را برای حل معادله بکار می بریم. سپس، با استفاده از روش بی - اسپلاین مربعی اجزای محدود و روش گسسته سازی زمان نیز، معادله برگر را به دس...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023